Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
PLoS One ; 19(2): e0293072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38349913

RESUMEN

We performed a forward genetic screen to discover peptides that specifically target breast cancer cells using a Penetratin tagged, random 15mer peptide library. We identified a group of novel peptides that specifically inhibited the proliferation and survival of breast cancer cells without affecting normal primary mammary epithelial cells or fibroblasts. The intrinsic apoptotic pathway is activated by these peptides in the face of abnormal expression of numerous cell cycle regulatory genes. Associated alterations in histone marks, nuclear structure, and levels of critical RNA binding proteins vary in a peptide specific manner. This study demonstrates a novel method for the discovery of new potential therapeutic peptides.


Asunto(s)
Neoplasias de la Mama , Biblioteca de Péptidos , Humanos , Femenino , Proliferación Celular , Péptidos/química , Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo
2.
Invest Ophthalmol Vis Sci ; 64(5): 1, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126314

RESUMEN

Purpose: Familial exudative vitreoretinopathy (FEVR) and Norrie disease are examples of genetic disorders in which the retinal vasculature fails to fully form (hypovascular), leading to congenital blindness. While studying the role of a factor expressed during retinal development, T-box factor Tbx3, we discovered that optic cup loss of Tbx3 caused the retina to become hypovascular. The purpose of this study was to characterize how loss of Tbx3 affects retinal vasculature formation. Methods: Conditional removal of Tbx3 from both retinal progenitors and astrocytes was done using the optic cup-Cre recombinase driver BAC-Dkk3-Cre and was analyzed using standard immunohistochemical techniques. Results: With Tbx3 loss, the retinas were hypovascular, as seen in patients with retinopathy of prematurity (ROP) and FEVR. Retinal vasculature failed to form the stereotypic tri-layered plexus in the dorsal-temporal region. Astrocyte precursors were reduced in number and failed to form a lattice at the dorsal-temporal edge. We next examined retinal ganglion cells, as they have been shown to play a critical role in retinal angiogenesis. We found that melanopsin expression and Islet1/2-positive retinal ganglion cells were reduced in the dorsal half of the retina. In previous studies, the loss of melanopsin has been linked to hyaloid vessel persistence, which we also observed in the Tbx3 conditional knockout (cKO) retinas, as well as in infants with ROP or FEVR. Conclusions: To the best of our knowledge, these studies are the first demonstration that Tbx3 is required for normal mammalian eye formation. Together, the results provide a potential genetic model for retinal hypovascular diseases.


Asunto(s)
Degeneración Retiniana , Retinopatía de la Prematuridad , Ratones , Animales , Recién Nacido , Humanos , Retina , Células Ganglionares de la Retina , Vasos Retinianos , Vitreorretinopatías Exudativas Familiares , Mamíferos , Proteínas de Dominio T Box
3.
BMC Biol ; 21(1): 55, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941669

RESUMEN

BACKGROUND: The reactivation of genetic programs from early development is a common mechanism for injury-induced organ regeneration. T-box 3 (TBX3) is a member of the T-box family of transcription factors previously shown to regulate pluripotency and subsequent lineage commitment in a number of tissues, including limb and lung. TBX3 is also involved in lung and heart organogenesis. Here, we provide a comprehensive and thorough characterization of TBX3 and its role during pancreatic organogenesis and regeneration. RESULTS: We interrogated the level and cell specificity of TBX3 in the developing and adult pancreas at mRNA and protein levels at multiple developmental stages in mouse and human pancreas. We employed conditional mutagenesis to determine its role in murine pancreatic development and in regeneration after the induction of acute pancreatitis. We found that Tbx3 is dynamically expressed in the pancreatic mesenchyme and epithelium. While Tbx3 is expressed in the developing pancreas, its absence is likely compensated by other factors after ablation from either the mesenchymal or epithelial compartments. In an adult model of acute pancreatitis, we found that a lack of Tbx3 resulted in increased proliferation and fibrosis as well as an enhanced inflammatory gene programs, indicating that Tbx3 has a role in tissue homeostasis and regeneration. CONCLUSIONS: TBX3 demonstrates dynamic expression patterns in the pancreas. Although TBX3 is dispensable for proper pancreatic development, its absence leads to altered organ regeneration after induction of acute pancreatitis.


Asunto(s)
Pancreatitis , Adulto , Humanos , Animales , Ratones , Enfermedad Aguda , Pancreatitis/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Páncreas/metabolismo , Organogénesis/genética
4.
Dev Dyn ; 251(10): 1711-1727, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35618654

RESUMEN

BACKGROUND: Asymmetries in craniofacial anomalies are commonly observed. In the facial skeleton, the left side is more commonly and/or severely affected than the right. Such asymmetries complicate treatment options. Mechanisms underlying variation in disease severity between individuals as well as within individuals (asymmetries) are still relatively unknown. RESULTS: Developmental reductions in fibroblast growth factor 8 (Fgf8) have a dosage dependent effect on jaw size, shape, and symmetry. Further, Fgf8 mutants have directionally asymmetric jaws with the left side being more affected than the right. Defects in lower jaw development begin with disruption to Meckel's cartilage, which is discontinuous. All skeletal elements associated with the proximal condensation are dysmorphic, exemplified by a malformed and misoriented malleus. At later stages, Fgf8 mutants exhibit syngnathia, which falls into two broad categories: bony fusion of the maxillary and mandibular alveolar ridges and zygomatico-mandibular fusion. All of these morphological defects exhibit both inter- and intra-specimen variation. CONCLUSIONS: We hypothesize that these asymmetries are linked to heart development resulting in higher levels of Fgf8 on the right side of the face, which may buffer the right side to developmental perturbations. This mouse model may facilitate future investigations of mechanisms underlying human syngnathia and facial asymmetry.


Asunto(s)
Región Branquial , Corazón , Animales , Factor 8 de Crecimiento de Fibroblastos/genética , Humanos , Anomalías Maxilomandibulares , Maxilar , Ratones , Anomalías de la Boca
5.
Dev Dyn ; 251(9): 1613-1627, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35506352

RESUMEN

The limb phenotypes of Tbx2 and Tbx3 mutants are distinct: loss of Tbx2 results in isolated duplication of digit 4 in the hindlimb while loss of Tbx3 results in anterior polydactyly and posterior oligodactly in the forelimb. In the face of such disparate phenotypes, we sought to determine whether Tbx2 and Tbx3 have functional redundancy during development of the mouse limb. We found that sequential loss of alleles generates defects that are not simply additive of those observed in single mutants and that multiple structures in both the forelimb and hindlimb display compound sensitivity to decreased gene dosage.


Asunto(s)
Extremidades , Proteínas de Dominio T Box/metabolismo , Animales , Miembro Posterior , Ratones , Fenotipo , Proteínas de Dominio T Box/genética
6.
Mol Ther Oncolytics ; 23: 342-354, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34820504

RESUMEN

hnRNPK is a multifunctional protein that plays an important role in cancer cell proliferation and metastasis via its RNA- and DNA-binding properties. Previously we showed that cell-penetrating peptides derived from the RGG RNA-binding domain of SAFA (hnRNPU) disrupt cancer cell proliferation and survival. Here we explore the efficacy of a peptide derived from the RGG domain of hnRNPK. This peptide acts in a dominant-negative manner on several hnRNPK functions to induce death of multiple types of cancer cells. The peptide phenocopies the effect of hnRNPK knockdown on its mRNA-stability targets such as KLF4 and EGR1 and alters the levels and locations of long non-coding RNAs (lncRNAs) and proteins required for nuclear and paraspeckle formation and function. The RGG-derived peptide also decreases euchromatin as evidenced by loss of active marks and polymerase II occupancy. Our findings reveal the potential therapeutic utility of the hnRNPK RGG-derived peptide in a range of cancers.

7.
Cell Rep ; 35(9): 109156, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077726

RESUMEN

RBM39 is a known splicing factor and coactivator. Here, we report that RBM39 functions as a master transcriptional regulator that interacts with the MLL1 complex to facilitate chromatin binding and H3K4 trimethylation in breast cancer cells. We identify RBM39 functional domains required for DNA and complex binding and show that the loss of RBM39 has widespread effects on H3K4me3 and gene expression, including key oncogenic pathways. RBM39's RNA recognition motif 3 (RRM3) functions as a dominant-negative domain; namely, it disrupts the complex and H3K4me trimethylation and expression of RBM/MLL1 target genes. RRM3-derived cell-penetrating peptides phenocopy the effects of the loss of RBM39 to decrease growth and survival of all major subtypes of breast cancer and yet are nontoxic to normal cells. These findings establish RBM39/MLL1 as a major contributor to the abnormal epigenetic landscape in breast cancer and lay the foundation for peptide-mediated cancer-specific therapy based on disruption of RBM39 epigenomic functions.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Epigenómica , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Péptidos/metabolismo , Proteínas de Unión al ARN/genética , Transcripción Genética , Animales , Carcinogénesis/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular/genética , Supervivencia Celular , Péptidos de Penetración Celular/metabolismo , Femenino , Células HEK293 , Código de Histonas , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones Endogámicos NOD , Ratones SCID , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica , Dominios Proteicos , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
8.
Front Oncol ; 11: 621825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859938

RESUMEN

Scaffold-attachment-factor A (SAFA) has important roles in many normal and pathologic cellular processes but the scope of its function in cancer cells is unknown. Here, we report dominant-negative activity of novel peptides derived from the SAP and RGG-domains of SAFA and their effects on proliferation, survival and the epigenetic landscape in a range of cancer cell types. The RGG-derived peptide dysregulates SAFA binding and regulation of alternatively spliced targets and decreases levels of key spliceosome proteins in a cell-type specific manner. In contrast, the SAP-derived peptide reduces active histone marks, promotes chromatin compaction, and activates the DNA damage response and cell death in a subset of cancer cell types. Our findings reveal an unprecedented function of SAFA-derived peptides in regulating diverse SAFA molecular functions as a tumor suppressive mechanism and demonstrate the potential therapeutic utility of SAFA-peptides in a wide range of cancer cells.

9.
Development ; 147(22)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33046506

RESUMEN

FGF8 signaling plays diverse roles in inner ear development, acting at multiple stages from otic placode induction to cellular differentiation in the organ of Corti. As a secreted morphogen with diverse functions, Fgf8 expression is likely to be spatially restricted and temporally dynamic throughout inner ear development. We evaluated these characteristics using genetic labeling mediated by Fgf8mcm gene-targeted mice and determined that Fgf8 expression is a specific and early marker of Type-I vestibular hair cell identity. Fgf8mcm expression initiates at E11.5 in the future striolar region of the utricle, labeling hair cells following EdU birthdating, and demonstrates that sub-type identity is determined shortly after terminal mitosis. This early fate specification is not apparent using markers or morphological criteria that are not present before birth in the mouse. Although analyses of Fgf8 conditional knockout mice did not reveal developmental phenotypes, the restricted pattern of Fgf8 expression suggests that functionally redundant FGF ligands may contribute to vestibular hair cell differentiation and supports a developmental model in which Type-I and Type-II hair cells develop in parallel rather than from an intermediate precursor.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos/metabolismo , Células Ciliadas Vestibulares/metabolismo , Sáculo y Utrículo/embriología , Animales , Factor 8 de Crecimiento de Fibroblastos/genética , Células Ciliadas Vestibulares/citología , Ratones , Ratones Noqueados , Sáculo y Utrículo/citología
10.
Proc Natl Acad Sci U S A ; 117(27): 15712-15723, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32561646

RESUMEN

The mechanisms used by embryos to pattern tissues across their axes has fascinated developmental biologists since the founding of embryology. Here, using single-cell technology, we interrogate complex patterning defects and define a Hedgehog (Hh)-fibroblast growth factor (FGF) signaling axis required for anterior mesoderm lineage development during gastrulation. Single-cell transcriptome analysis of Hh-deficient mesoderm revealed selective deficits in anterior mesoderm populations, culminating in defects to anterior embryonic structures, including the pharyngeal arches, heart, and anterior somites. Transcriptional profiling of Hh-deficient mesoderm during gastrulation revealed disruptions to both transcriptional patterning of the mesoderm and FGF signaling for mesoderm migration. Mesoderm-specific Fgf4/Fgf8 double-mutants recapitulated anterior mesoderm defects and Hh-dependent GLI transcription factors modulated enhancers at FGF gene loci. Cellular migration defects during gastrulation induced by Hh pathway antagonism were mitigated by the addition of FGF4 protein. These findings implicate a multicomponent signaling hierarchy activated by Hh ligands from the embryonic node and executed by FGF signals in nascent mesoderm to control anterior mesoderm patterning.


Asunto(s)
Factor 4 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/genética , Gastrulación/genética , Proteína con Dedos de Zinc GLI1/genética , Animales , Tipificación del Cuerpo/genética , Linaje de la Célula/genética , Embrión de Pollo , Factores de Crecimiento de Fibroblastos/genética , Gástrula/crecimiento & desarrollo , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/genética , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Transducción de Señal/genética , Análisis de la Célula Individual , Transcriptoma/genética
11.
Pediatr Cardiol ; 40(7): 1388-1400, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31372681

RESUMEN

In this article, we provide a brief summary of work by us and others to discover the molecular underpinnings of early conduction system development and function. We focus on how the multifunctional protein Tbx3 contributes to acquisition and homeostasis of the tissue-specific properties of the sinoatrial and atrioventricular nodes. We also provide unpublished, preliminary findings supporting the role of Tbx3-regulated alternative RNA processing in the developing conduction system.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Sistema de Conducción Cardíaco/metabolismo , Animales , Nodo Atrioventricular/fisiopatología , Expresión Génica , Sistema de Conducción Cardíaco/embriología , Humanos , ARN/metabolismo , Proteínas de Dominio T Box
12.
Development ; 146(4)2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787001

RESUMEN

Congenital heart disease (CHD) is the most common type of birth defect. In recent years, research has focussed on identifying the genetic causes of CHD. However, only a minority of CHD cases can be attributed to single gene mutations. In addition, studies have identified different environmental stressors that promote CHD, but the additive effect of genetic susceptibility and environmental factors is poorly understood. In this context, we have investigated the effects of short-term gestational hypoxia on mouse embryos genetically predisposed to heart defects. Exposure of mouse embryos heterozygous for Tbx1 or Fgfr1/Fgfr2 to hypoxia in utero increased the incidence and severity of heart defects while Nkx2-5+/- embryos died within 2 days of hypoxic exposure. We identified the molecular consequences of the interaction between Nkx2-5 and short-term gestational hypoxia, which suggest that reduced Nkx2-5 expression and a prolonged hypoxia-inducible factor 1α response together precipitate embryo death. Our study provides insight into the causes of embryo loss and variable penetrance of monogenic CHD, and raises the possibility that cases of foetal death and CHD in humans could be caused by similar gene-environment interactions.


Asunto(s)
Interacción Gen-Ambiente , Cardiopatías Congénitas/genética , Corazón/embriología , Proteína Homeótica Nkx-2.5/genética , Proteínas de Homeodominio/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Animales , Apoptosis , Proliferación Celular , Embrión de Mamíferos/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Corazón/diagnóstico por imagen , Heterocigoto , Proteína Homeótica Nkx-2.5/fisiología , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxígeno/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Proteínas de Dominio T Box/genética , Factores de Tiempo
13.
Dev Biol ; 444 Suppl 1: S337-S351, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30292786

RESUMEN

Transcription factors that coordinate migration, differentiation or proliferation of enteric nervous system (ENS) precursors are not well defined. To identify novel transcriptional regulators of ENS development, we performed microarray analysis at embryonic day (E) 17.5 and identified many genes that were enriched in the ENS compared to other bowel cells. We decided to investigate the T-box transcription factor Tbx3, which is prominently expressed in developing and mature ENS. Haploinsufficiency for TBX3 causes ulnar-mammary syndrome (UMS) in humans, a multi-organ system disorder. TBX3 also regulates several genes known to be important for ENS development. To test the hypothesis that Tbx3 is important for ENS development or function, we inactivated Tbx3 in all neural crest derivatives, including ENS progenitors using Wnt1-Cre and a floxed Tbx3 allele. Tbx3 fl/fl; Wnt1-Cre conditional mutant mice die shortly after birth with cleft palate and difficulty feeding. The ENS of mutants was well-organized with a normal density of enteric neurons and nerve fiber bundles, but small bowel glial cell density was reduced. Despite this, bowel motility appeared normal. Furthermore, although Tbx3 is expressed in cardiac neural crest, Tbx3 fl/fl; Wnt1-Cre mice had structurally normal hearts. Thus, loss of Tbx3 within neural crest has selective effects on Tbx3-expressing neural crest derivatives.


Asunto(s)
Sistema Nervioso Entérico/embriología , Cresta Neural/embriología , Proteínas de Dominio T Box/fisiología , Animales , Diferenciación Celular , Movimiento Celular , Fisura del Paladar/embriología , Fisura del Paladar/genética , Corazón/embriología , Intestinos/embriología , Ratones , Ratones Endogámicos C57BL , Cresta Neural/metabolismo , Cresta Neural/fisiología , Neurogénesis , Neuroglía/fisiología , Neuronas , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Proteína Wnt1
14.
PLoS One ; 12(9): e0184678, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28961240

RESUMEN

BACKGROUND: Genetic and epigenetic programs regulate dramatic structural changes during cardiac morphogenesis. Concurrent biomechanical forces within the heart created by blood flow and pressure in turn drive downstream cellular, molecular and genetic responses. Thus, a genetic-morphogenetic-biomechanical feedback loop is continually operating to regulate heart development. During the evolution of a congenital heart defect, concomitant abnormalities in blood flow, hemodynamics, and patterns of mechanical loading would be predicted to change the output of this feedback loop, impacting not only the ultimate morphology of the defect, but potentially altering tissue-level biomechanical properties of structures that appear structurally normal. AIM: The goal of this study was to determine if abnormal hemodynamics present during outflow tract formation and remodeling in a genetically engineered mouse model of persistent truncus arteriosus (PTA) causes tissue-level biomechanical abnormalities. METHODS: The passive stiffness of surface locations on the left ventricle (LV), right ventricle (RV), and outflow tract (OFT) was measured with a pipette aspiration technique in Fgf8;Isl1Cre conditional mutant embryonic mouse hearts and controls. Control and mutant experimental results were compared by a strain energy metric based on the measured relationship between pressure and aspirated height, and also used as target behavior for finite element models of the ventricles. Model geometry was determined from 3D reconstructions of whole-mount, confocal-imaged hearts. The stress-strain relationship of the model was adjusted to achieve an optimal match between model and experimental behavior. RESULTS AND CONCLUSION: Although the OFT is the most severely affected structure in Fgf8;Isl1Cre hearts, its passive stiffness was the same as in control hearts. In contrast, both the LV and RV showed markedly increased passive stiffness, doubling in LVs and quadrupling in RVs of mutant hearts. These differences are not attributable to differences in ventricular volume, wall thickness, or trabecular density. Excellent agreement was obtained between the model and experimental results. Overall our findings show that hearts developing PTA have early changes in ventricular tissue biomechanics relevant to cardiac function and ongoing development.


Asunto(s)
Modelos Animales de Enfermedad , Miocardio/patología , Tronco Arterial Persistente/patología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal
15.
Dis Model Mech ; 9(11): 1257-1269, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27491074

RESUMEN

In the vertebrate limb over 40 muscles are arranged in a precise pattern of attachment via muscle connective tissue and tendon to bone and provide an extensive range of motion. How the development of somite-derived muscle is coordinated with the development of lateral plate-derived muscle connective tissue, tendon and bone to assemble a functional limb musculoskeletal system is a long-standing question. Mutations in the T-box transcription factor, TBX3, have previously been identified as the genetic cause of ulnar-mammary syndrome (UMS), characterized by distinctive defects in posterior forelimb bones. Using conditional mutagenesis in mice, we now show that TBX3 has a broader role in limb musculoskeletal development. TBX3 is not only required for development of posterior forelimb bones (ulna and digits 4 and 5), but also for a subset of posterior muscles (lateral triceps and brachialis) and their bone eminence attachment sites. TBX3 specification of origin and insertion sites appears to be tightly linked with whether these particular muscles develop and may represent a newly discovered mechanism for specification of anatomical muscles. Re-examination of an individual with UMS reveals similar previously unrecognized muscle and bone eminence defects and indicates a conserved role for TBX3 in regulating musculoskeletal development.


Asunto(s)
Anomalías Múltiples/patología , Enfermedades de la Mama/patología , Miembro Anterior/patología , Músculos/patología , Proteínas de Dominio T Box/genética , Cúbito/anomalías , Animales , Linaje de la Célula , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/patología , Olécranon/patología , Proteínas de Dominio T Box/metabolismo , Tendones/patología , Cúbito/patología
16.
Elife ; 52016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27046536

RESUMEN

Crucial roles for T-box3 in development are evident by severe limb malformations and other birth defects caused by T-box3 mutations in humans. Mechanisms whereby T-box3 regulates limb development are poorly understood. We discovered requirements for T-box at multiple stages of mouse limb development and distinct molecular functions in different tissue compartments. Early loss of T-box3 disrupts limb initiation, causing limb defects that phenocopy Sonic Hedgehog (Shh) mutants. Later ablation of T-box3 in posterior limb mesenchyme causes digit loss. In contrast, loss of anterior T-box3 results in preaxial polydactyly, as seen with dysfunction of primary cilia or Gli3-repressor. Remarkably, T-box3 is present in primary cilia where it colocalizes with Gli3. T-box3 interacts with Kif7 and is required for normal stoichiometry and function of a Kif7/Sufu complex that regulates Gli3 stability and processing. Thus, T-box3 controls digit number upstream of Shh-dependent (posterior mesenchyme) and Shh-independent, cilium-based (anterior mesenchyme) Hedgehog pathway function.


Asunto(s)
Miembro Anterior/embriología , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior/embriología , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Miembro Anterior/anomalías , Miembro Posterior/anomalías , Cinesinas/metabolismo , Ratones , Mapeo de Interacción de Proteínas , Proteínas de Dominio T Box/genética , Proteína Gli3 con Dedos de Zinc
17.
Elife ; 32014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24876127

RESUMEN

Cellular senescence is a crucial tumor suppressor mechanism. We discovered a CAPERα/TBX3 repressor complex required to prevent senescence in primary cells and mouse embryos. Critical, previously unknown roles for CAPERα in controlling cell proliferation are manifest in an obligatory interaction with TBX3 to regulate chromatin structure and repress transcription of CDKN2A-p16INK and the RB pathway. The IncRNA UCA1 is a direct target of CAPERα/TBX3 repression whose overexpression is sufficient to induce senescence. In proliferating cells, we found that hnRNPA1 binds and destabilizes CDKN2A-p16INK mRNA whereas during senescence, UCA1 sequesters hnRNPA1 and thus stabilizes CDKN2A-p16INK. Thus CAPERα/TBX3 and UCA1 constitute a coordinated, reinforcing mechanism to regulate both CDKN2A-p16INK transcription and mRNA stability. Dissociation of the CAPERα/TBX3 co-repressor during oncogenic stress activates UCA1, revealing a novel mechanism for oncogene-induced senescence. Our elucidation of CAPERα and UCA1 functions in vivo provides new insights into senescence induction, and the oncogenic and developmental properties of TBX3.


Asunto(s)
Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Proliferación Celular , Cromatina/química , Fibroblastos/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Espectrometría de Masas , Ratones , Oncogenes , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo
18.
PLoS One ; 9(3): e90970, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24599258

RESUMEN

Heterotrimeric G-proteins modulate many processes essential for embryonic development including cellular proliferation, migration, differentiation, and survival. Although most research has focused on identifying the roles of the various αsubtypes, there is growing recognition that similarly divergent ßγ dimers also regulate these processes. In this paper, we show that targeted disruption of the mouse Gng5 gene encoding the γ5 subtype produces embryonic lethality associated with severe head and heart defects. Collectively, these results add to a growing body of data that identify critical roles for the γ subunits in directing the assembly of functionally distinct G-αßγ trimers that are responsible for regulating diverse biological processes. Specifically, the finding that loss of the G-γ5 subtype is associated with a reduced number of cardiac precursor cells not only provides a causal basis for the mouse phenotype but also raises the possibility that G-ßγ5 dependent signaling contributes to the pathogenesis of human congenital heart problems.


Asunto(s)
Pérdida del Embrión/patología , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Animales , Biomarcadores/metabolismo , Región Branquial/anomalías , Región Branquial/embriología , Región Branquial/patología , Proliferación Celular , Cruzamientos Genéticos , Pérdida del Embrión/genética , Pérdida del Embrión/metabolismo , Femenino , Subunidades gamma de la Proteína de Unión al GTP/deficiencia , Subunidades gamma de la Proteína de Unión al GTP/genética , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Sitios Genéticos/genética , Genotipo , Ventrículos Cardíacos/anomalías , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/patología , Humanos , Masculino , Ratones , Mutación/genética , Miocardio/metabolismo , Miocardio/patología , Fenotipo , Análisis de Supervivencia
19.
PLoS Genet ; 10(3): e1004247, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24675841

RESUMEN

TBX3 is a member of the T-box family of transcription factors with critical roles in development, oncogenesis, cell fate, and tissue homeostasis. TBX3 mutations in humans cause complex congenital malformations and Ulnar-mammary syndrome. Previous investigations into TBX3 function focused on its activity as a transcriptional repressor. We used an unbiased proteomic approach to identify TBX3 interacting proteins in vivo and discovered that TBX3 interacts with multiple mRNA splicing factors and RNA metabolic proteins. We discovered that TBX3 regulates alternative splicing in vivo and can promote or inhibit splicing depending on context and transcript. TBX3 associates with alternatively spliced mRNAs and binds RNA directly. TBX3 binds RNAs containing TBX binding motifs, and these motifs are required for regulation of splicing. Our study reveals that TBX3 mutations seen in humans with UMS disrupt its splicing regulatory function. The pleiotropic effects of TBX3 mutations in humans and mice likely result from disrupting at least two molecular functions of this protein: transcriptional regulation and pre-mRNA splicing.


Asunto(s)
Anomalías Múltiples/genética , Empalme Alternativo/genética , Enfermedades de la Mama/genética , Mapas de Interacción de Proteínas/genética , Proteínas de Dominio T Box/genética , Cúbito/anomalías , Anomalías Múltiples/patología , Animales , Enfermedades de la Mama/patología , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Mutación , Malformaciones del Sistema Nervioso , Proteómica/métodos , Precursores del ARN/genética , ARN Mensajero/genética , Proteínas de Dominio T Box/biosíntesis , Cúbito/patología
20.
Dev Biol ; 390(1): 68-79, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24613616

RESUMEN

The vertebrate heart develops from mesoderm and requires inductive signals secreted from early endoderm. During embryogenesis, Nkx2.5 acts as a key transcription factor and plays essential roles for heart formation from Drosophila to human. In mice, Nkx2.5 is expressed in the early first heart field, second heart field pharyngeal mesoderm, as well as pharyngeal endodermal cells underlying the second heart field. Currently, the specific requirements for Nkx2.5 in the endoderm versus mesoderm with regard to early heart formation are incompletely understood. Here, we performed tissue-specific deletion in mice to dissect the roles of Nkx2.5 in the pharyngeal endoderm and mesoderm. We found that heart development appeared normal after endodermal deletion of Nkx2.5 whereas mesodermal deletion engendered cardiac defects almost identical to those observed on Nkx2.5 null embryos (Nkx2.5(-/-)). Furthermore, re-expression of Nkx2.5 in the mesoderm rescued Nkx2.5(-/-) heart defects. Our findings reveal that Nkx2.5 in the mesoderm is essential while endodermal expression is dispensable for early heart formation in mammals.


Asunto(s)
Corazón/embriología , Proteínas de Homeodominio/genética , Mesodermo/metabolismo , Miocardio/metabolismo , Factores de Transcripción/genética , Animales , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/ultraestructura , Endodermo/embriología , Endodermo/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Mesodermo/embriología , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Faringe/embriología , Faringe/metabolismo , Embarazo , Factores de Tiempo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...